悠潭UTARN致力于基于脉冲神经网络的类脑人工智能(第三代人工智能 通用人工智能)的基础研究和商业应用落地,科研团队来自清华大学。公司创始人兼首席科学家何虎博士带领团多年从事类脑算法和类脑芯片的研究。目前公开资料而言,公司研究的基于SNN的因果学习算法系统和“思辨1号”通用推理芯片在世界上都属于领先地位,公司还首次引入“硅基大脑 Silicone-based Brain SBB”概念,成为”硅基大脑SSB”全新赛道的开创者。悠潭UTARN成立于2019年4月,期间获得了启赋资本百万的天使轮和鼎行晟资本近千万天使+轮投资。公司的使命是“更好的服务人类 Better Service For Human”。
永利总站15856【中国】有限责任公司致力于基于脉冲神经网络的类脑人工智能(第三代人工智能 通用人工智能)的基础研究和商业应用落地,科研团队来自清华大学和北京理工大学。公司创始人兼首席科学家何虎博士带领团多年从事类脑算法和类脑芯片的研究。目前公开资料而言,公司研究的基于SNN的因果学习算法系统和“思辨1号”通用推理芯片在世界上都属于领先地位,公司还首次引入“硅基大脑 Silicone-based Brain SBB”概念,成为”硅基大脑SSB”全新赛道的开创者。永利总站15856【中国】有限责任公司成立于2019年4月,期间获得了启赋资本百万的天使轮和鼎行晟资本近千万天使+轮投资。公司的使命是“让AI更好的服务人类 Better Service For Human”。
Hu He, Qilin Wang, Xu Yang, Yunlin Lei, Jian Cai, Ning Deng
ABSTRACT
Memory’s mechanism has always been the most tempting treasure for researchers. Many contributions have been delivered to unearth the mystery of memory. In this paper, we present our effort at attempting to reveal the mechanism of memory through computational neuroscience approach. We have constructed a structural efficient memory neural system with three modules, which could simulate the process where new memory is generated and kept and could be extracted. We have proved that new connections grow during the memory forming phase are vital for the keeping of memory. We propose that neurons in the memory layer could be divided into two kinds of neurons: neurons serve as interfaces for memory, and neurons serve as the main body for the keeping of memory. We also provide a method to regulate the memory layer to avoid epileptic states and work properly. The result shows our method could generate memory neural system with reasonably high memory extraction accuracy, high energy efficiency, and high robustness for different input stimulations.
近日,世界华人数学家联盟最佳论文奖于2020世界华人数学家联盟年会期间颁布。智源研究员邓柯作为第一作者的学术论文“On the unsupervised analysis of domain-specific Chinese texts”获“2020世界华人数学家联盟最佳论文奖-银奖”。 另附论文链接:
该系统在误差直接回传算法(DFA)的基础上进行改进,利用PCM电导的随机性自然地产生传播误差的随机权重,有效降低了系统的硬件开销以及训练过程中的时间、能量消耗。该系统在大型卷积神经网络的训练过程中表现优异,为人工神经网络在终端平台上的应用以及片上训练的实现提供了新的方向。该文章发表在微电子领域的顶级会议IEDM 2020上。 文章:Yingming Lu, Xi Li, Longhao Yan, Teng Zhang, Yuchao Yang*, Zhitang Song*, and Ru Huang*, Accelerated Local Training of CNNs by Optimized Direct Feedback Alignment Based on Stochasticity of 4 Mb C-doped Ge2Sb2Te5 PCM Chip in 40 nm Node. IEDM Tech. Dig. 36.3, 2020.